GRAVITY MODEL AND ECONOMIC ANALYSIS FOR REGIONAL RAIL IN THE EDMONTON – CALGARY CORRIDOR

Jean-Pierre ARDUIN Ingénieur Civil des Mines

Thomas FRYER (PEng) Civil/Structural Engineer

INDEX

EXECUTIVE SUMMARY	2
PURPOSE	2
ASSUMPTIONS	2
CONCLUSION	2
INTRODUCTION & DATA	3
DISTANCES BETWEEN MAIN CENTER ZONES	5
GRAVITATIONAL MODEL & GENERALISED COSTS	5
POTENTIAL ATTRACTION BETWEEN CITIES	6
POTENTIAL REPULSION BETWEEN CITIES	7
GRAVITY MODEL: GEOGRAPHICAL DISTRIBUTION OF THE POPULATION	8
TRAFFIC PATTERN ALONG THE CORRIDOR	9
GRAVITY MODEL APPLIED IN WEST CANADA	9
REGIONAL RAIL SYSTEM RIDERSHIP	11
REGIONAL RAIL SYSTEM ASSUMPTIONS	12
APPLICATION TO REGIONAL RAIL SYSTEM EDMONTON – CALGARY	12
DISTRIBUTION OF REGIONAL RAIL SYSTEM MARKET ALONG THE CORRIDOR	12
REGIONAL RAIL SYSTEM ECONOMIC ANALYSIS	14
INFRASTRUCTURE COSTS	15
ROLLING STOCK	16
OPERATING COSTS	16
INTERNAL RATE OF RETURN	17
PUBLIC PRIVATE PARTNERSHIP	18
REGIONAL RAIL SYSTEM WITH EXPRESS SERVICES	20
INFRASTRUCTURE COSTS	21
ROLLING STOCK	21
OPERATING COSTS	21
INTERNAL RATE OF RETURN	22
PUBLIC PRIVATE PARTNERSHIP	22
ECONOMIC IMPACT	23
CONCLUSIONS	24
	EXECUTIVE SUMMARY

APPENDIX

1. EXECUTIVE SUMMARY

1.1 PURPOSE

The purpose of this analysis is to provide to the reader an understanding of the potential ridership of a regional rail system in the Calgary – Edmonton corridor, utilizing the existing Canadian Pacific Railway Right of Way.

1.2 ASSUMPTIONS

This analysis uses data provided in the 2021 Alberta Census, and using Gravity Model equations to calculate what a Regional Rail System market level could reach.

According to transport economic theory, the traffic between two cities is proportional to the populations of these two cities and inversely proportional to the square of the Generalized Cost considered as the sum of the cost and value of time to travel the distance separating them.

Using the theoretical assumptions, we will obtain the percentage for Regional Rail System market share on each relation.

1.3 CONCLUSION

Using the Gravity Model calculations, we estimate regional rail ridership to be in the region of 5.2 million passengers per year.

Due to the nature of Calgary being the financial and business hub, Edmonton being the Government centre with the Provincial Legislature, and the corridor being an established Industrial Corridor, the overall ridership can be estimated to be significantly larger than what is calculated through this Gravity Model. Therefore the economics of regional and express rail services would improve, creating an IRR greater than the calculated 9.51%.

A Public Private Partnership venture could be engaged in, that would further improve the economics of regional and express passenger rail services in the corridor, creating an IRR greater than 20% depending upon the value of Federal and Provincial grants and funds, or amount of subsidy approved.

More studies need to be done in order to explore all the solutions. Relations & Connections with Railways will be required in order to have access to the Right of Way and stations.

2. INTRODUCTION & DATA

This analysis uses data provided by Alberta Regional Rail, Texas Triangle Railroad Holding Company and Rail Concept. Data are elaborated from Alberta Census Data 2021.

			Populations	
	Distances Between km	Calmative Distance km	2016	2021
Calgary	0	0	1239220	1306784
Airdrie	36.4	36.4	61842	74100
Crossfield	13.8	50.2	2983	3599
Carstairs	16	66.2	4077	4898
Didsbury	13.3	79.5	5268	5070
Olds	20	99.5	9184	9209
Bowden	18.5	118	1240	1280
Innisfail	13.5	131.5	7847	7985
Penhold	14.5	146	3277	3484
Red Deer	14.1	160.1	100418	100844
Blackfalds	18.2	178.3	9328	10470
Lacombe	11.7	190	13057	10283
Morningside	14.9	204.9	97	120
Ponoka	12.3	217.2	7229	9998
Maskwacis	20.7	237.9	20869	20569
Wetaskiwin	17.5	255.4	12655	12594
Millet	16.5	271.9	1945	1890
Leduc	21.3	293.2	55678	48510
Nisku	8.7	301.9	30	30
Edmonton	22	323.9	932546	1010899
	323.9		2488790	2642616

Fig 1: Extract of Official Demographic Data 2016 & 2021

The purpose of this analysis is to provide to the reader an understanding of what Regional Rail infrastructure market level could reach. This is done using mathematical models tuned to the North American environment.

3. DISTANCES between main center Zones

Using Google Maps as a provider, we prepared a matrix of distances between all the towns and cities in the corridor. The larger population centres could also be the possible location of future higher speed express stations. The table can be found in the Appendix, all distances are in kilometers.

4. GRAVITATIONAL MODEL & GENERALISED COSTS

According to transport economic theory, the traffic between two cities is proportional to the populations of these two cities and inversely proportional to the square of the **Generalized Cost** considered as the sum of the cost and value of time to travel the distance separating them. By analogy with the universal law of gravity, this traffic model is called a gravity model:

$$Traff_{ij} = k \frac{Pop * Pop_j^{\alpha}}{Gc_{ij}^2}$$

where: Pop is the number of inhabitants and

Gc is the generalized travel cost, including the corresponding running time. Elasticity of Generalized Cost is 2 in most of traffic models.

Cross Product of Populations of two zones is in direct relation with a kind of force of attraction between these two zones. We name it **Potential Attraction** between city pair.

Generalized cost is defined as the **Potential Repulsion** between city pair. It is the sum of a kind of difficulty to go from one city to the other. Basically, it is the sum of the cost (the fare) we have to pay and the value of the time we have to spend to travel. In order to add time and money, introduced is the notion of value of time. **Value of Time** is defined, to simplify this economic notion, how much we are ready to spend to save one hour of travel.

Then, dividing Potential Attraction by Potential Repulsion, we estimate the traffic. An **endogen variable k** is estimated to tune the real situation on the corridor.

4.1 Potential Attraction between cities

Potential attraction between two cities is defined as the Product of the Population of these Cities and established as an Index. The table can be found in the Appendix.

The following matrix presents the crossed product of the populations for each city pair. We detect that the first city with the main Potential Attraction is Calgary followed by Edmonton and Red Deer. The smallest towns and cities have the lowest Potential Attraction.

4.2 Potential Repulsion between cities

The following matrix presents as an index the Generalized cost between city pair. Generalized cost is defined as above. The table can be found in the Appendix.

We detect that the city with the minimum consistent Potential Repulsion across all towns and cities is Red Deer. Edmonton and Calgary have a repulsion factor that is proportional to their distance to reach the city.

ALBERTA REGIONAL RAILWAY TRIANGLE RAILROAD HOLDING Co & RAIL CONCEPT ©

4.3 Gravity Model: Geographical Distribution of the Population

The following map is a theoretical representation of the distribution of the population along the West Canadian Corridor. The distance between cities is in Kilometers and the surface of each city is proportional to the population of each city. This is why this model is named a Gravity Model. The major populated cities behave like the big stars, and produce a better potential for the traffic. The distance and the cost to travel in relation with the distance between them reduce this potential like in the Sky.

5. Traffic Pattern along the Corridor

5.1 Gravity Model applied in West Canada

The following matrix presents the results of the estimation of the potential traffic (all modes of transport) between the city pairs. As explained previously, Traffic is the result of:

Traffic = *k* * *Potential Attraction / Potential Repulsion*

k is endogen variable as *an* INDEX

As an example, estimation of Potential traffic between Calgary & Edmonton:

- 1. Attraction: **1 321 027**
- **2.** Repulsion: 420
- 3. Traffic : Attraction / Repulsion = 3 148
- 4. The Potential Traffic (INDEX = 1) All modes of Transport are in direct relation with the Geo Demographical distribution of the population along the Corridor.

The table of the Potential Traffic Index can be found in the Appendix. Calgary obtains a 27% share of the potential traffic, with Edmonton taking a 21% share. It is interesting to note that Airdrie also takes a 21% share, and Leduc takes a 14% share, with Red Deer only taking a 5% share.

Calgary and Edmonton are the main cities to emit and receive travelers. Both cities are well balanced regarding all modes of traffic. Airdrie is smaller than Calgary, but close enough to Calgary to enjoy an attractive situation. A similar situation exists between Leduc and Edmonton, and also the towns and cities close to Red Deer.

Intensity of traffic flow for all modes in the Corridor: Economic ranking

It is possible to estimate the distribution of the intensity of the traffic flows and therefore **the** expenses to produce this amount of travel between the cities along the corridor. This will reveal where money is spent and where the production of traffic activity is necessary. This estimation must be considered as an INDEX. The next matrix presents the result as a traffic flow multiply by the distance travelled, similar to PAX in the air industry.

It is interesting to see that Calgary is the first city followed by Edmonton and Red Deer.

The Average Annual Daily Traffic data from the QE2 highway follows a similar pattern to the Potential Traffic Index.

MODAL SHARE of TRAFFIC along the Corridor

The following chart presents the theoretical generally observed distribution of the global traffic to the different modes of transportation, automobile, bus, air, and regional (or high speed) rail. For each mode, we use a calibrated statistical model putting in correlation the market share for the distance travelled between a city pair. A better new model will be necessary in the future to take in account the specificity of West Canada calibrated with surveys.

MARKET SHARE BY MODES of TRANSPORT

6. Regional Rail System Ridership

In this paragraph we will describe an option to implement an improved rail system in Alberta. This option will be seen as a Regional Rail System, this option will be an offer with a speed of 160 kph and CFR compliant freight compatible rolling stock.

No new tracks will be built and RRS trains will be operated on enhanced Canadian Pacific tracks, that includes additional passing points to accommodate the increased number of trains, upgraded grade crossings to enable whistle cessation of trains passing through, and where possible construction of road over rail bridges to improve the safety and speed of the railway.

An access fee will be required to operate RRS trains and paid to Canadian Pacific Railway.

6.1 Regional Rail System assumptions

In order to better understand assumptions used in this particular situation, we have to explain a specificity of Gravity Model.

As it is explained previously:

$$Traff_{ij} = k \frac{Pop * Pop_{j}^{\alpha}}{Gc_{ij}^{2}}$$

where: Pop is the number of inhabitants and

Gc is the generalized travel cost, including the corresponding running time.

Then $\mathbf{Gc} = \mathbf{f} + \mathbf{h} * \mathbf{t}$ where \mathbf{f} is how much you pay to travel (Fare) and \mathbf{t} the time spend to travel and \mathbf{h} the value of your time. Basically, this value is described as how much you are ready to spend to save an hour of your time. We will not enter in the economical description of the Log Normal mathematical function distribution of the value of time in the population of Alberta.

A Regional Rail System would have an operating speed of 160 kph, greater than the legal speed limit on the QE2 highway. The faster the speed, and therefore the lower running time between destinations, the greater the market share of the mode of transport.

Elasticity of Generalized Cost is 2 in most of traffic models.

6.2 Application to Regional Rail System Edmonton – Calgary

Using the theoretical assumptions as outlined, market share for Regional Rail System RRS we will obtain the percentage of market share for a Regional Rail System in the corridor, with ridership between all towns and cities on each relation. The table can be found in the Appendix. Using the calculations, we can estimate the ridership forecast for a Regional Rail System in the Calgary – Edmonton corridor, between all towns and cities, to be 5.2 million passengers per year.

6.3 Distribution of Regional Rail System Market along the Corridor

Although there is a total of 16,200 passengers per day likely to use a Regional Rail System, not everybody is going to travel the entire length of the corridor from Edmonton to Calgary and back, with only 713 potential passengers between Calgary and Edmonton. The highest potential ridership route is between Airdrie and Calgary with 3,131 potential passengers, and the second is between Leduc and Edmonton with 2,215 potential passengers.

Although Nisku has a minor market share of passengers, it is the location of the Edmonton International Airport, and also the location of the Premium Outlet Collection shopping mall. Both of which would be easily accessible from a regional rail station in Nisku, resulting in the attraction of a significant number of passengers not accounted for by using this gravity model.

Most of North America is in a grid, so urban-urban trips are generated in all directions between all centres. In Alberta due to our relative isolation from other centres, our relative prosperity for a long time, and the development of specialization over time we have much stronger links.

Calgary and Edmonton are complementary cities. We have corporate offices located in Calgary, regulators located in Edmonton, and an established Industrial Corridor between. The corridor itself has the highest trip generation in North American city pairs, about three to four times the equivalent Toronto-Montreal trip generation rate.

Although the population of the Calgary-Edmonton corridor is around 2 and a half million, travel in the corridor is equivalent to a population of 8 million to 10 million people. Aviation is the preferred mode for distances greater than 500 kilometres, and driving is the preferred mode for distances under 200 kilometres. The distance between Calgary and Edmonton is over 300 kilometres, making it ideal for passenger rail services.

An option would be to introduce an express service that only stops at principal stations, further reducing the journey time between destinations, which would increase the share of ridership on a Regional Rail System compared to private vehicles and air.

7. Regional Rail System Economic Analysis

With daily ridership at 16,200 passengers per day, and North American bi-level rolling stock with a seated capacity of 142 passengers per car, 10 services per day would be required. From Table 5 in the Appendix, peak passengers are between Airdrie and Calgary, and Leduc and Edmonton. Although the Corona Virus Pandemic has altered the way we live and work, people will still travel. A lot of companies have adopted a hybrid or flexible work schedule, with workers coming in for meetings and coming into the office most days of the week, there can still be expected to be peak hour services with limited off-peak services, and late evening trains.

					Ca	algary - Edr	monton Trai	n Timetable)					
Calgary Tower	Dep			5:40	7:15	9:15	11:15	12:30	13:45	15:45	16:45	17:45	19:45	21:30
Contry Hills Blvd	Dep			5:52	7:27	9:27	11:27	12:42	13:57	15:57	16:57	17:57	19:57	21:42
Airdrie	Dep			6:00	7:35	9:35	11:35	12:50	14:05	16:05	17:05	18:05	20:05	21:50
Crossfield	Dep			6:09	7:44	9:44	11:44	12:59	14:14	16:14	17:14	18:14	20:14	21:59
Carstairs	Dep			6:18	7:53	9:53	11:53	13:08	14:23	16:23	17:23	18:23	20:23	22:08
Didsburv	Dep			6:25	8:00	10:00	12:00	13:15	14:30	16:30	17:30	18:30	20:30	22:15
Olds	Dep			6:34	8:09	10:09	12:09	13:24	14:39	16:39	17:39	18:39	20:39	22:24
Bowden	Dep			6:42	8:17	10:17	12:17	13:32	14:47	16:47	17:47	18:47	20:47	22:32
Innisfail	Dep			6:50	8:25	10:25	12:25	13:40	14:55	16:55	17:55	18:55	20:55	22:40
Penhold	Dep			6:59	8:34	10:34	12:34	13:49	15:04	17:04	18.04	19:04	21.04	22.49
	Arr			7:08	8.43	10.43	12.43	13:58	15:13	17:13	18.13	19.13	21.13	22.58
Red Deer	Den	5.10	6.10	7:10	9:15	10:45	12:45	14.00	15:15	17:45	10.10	19:15	20	23:00
Blackfalds	Den	5.21	6.21	7.21	9:26	10:56	12:56	14.00	15:26	17:56		10:10		23.11
Lacombe	Den	5.28	6.28	7.21	0.20	11.03	12:00	14.11	15:20	18.03		10.20		23.11
Morningside	Dop	5.20	6.36	7:36	0:41	11.00	13.11	14.10	15.00	18.11		10:41		23.10
Bonoko	Dop	5.30	6.44	7:44	0:40	11.11	12:10	14.20	15.41	10.11		10:40		23.20
PUTIOKa	Dep	5.44	0.44	7.44	9.49	11.19	13.19	14.34	10.49	10.19		19.49		23.34
Wateskwacis	Dep	5.55	0.00	7.55	10.00	11.30	13.30	14.40	16.00	10.30		20.00		23.45
Welaskiwin	Dep	0.04	7.04	0.04	10.09	11.39	13.39	14.54	16.09	10.39		20.09		23.54
Ivillet	Dep	0.14	7.14	0.14	10.19	11.49	13.49	15.04	10.19	10.49		20.19		0.04
Leduc	Dep	6:24	7:24	8:24	10:29	11:59	13:59	15:14	16:29	18:59		20:29		0:14
NISKU	Dep	6:28	7:28	8:28	10:33	12:03	14:03	15:18	16:33	19:03		20:33		0:18
South Edmonton	Dep	6:37	7:37	8:37	10:42	12:12	14:12	15:27	16:42	19:12		20:42		0:27
Strathcona	Dep	6:42	7:42	8:42	10:47	12:17	14:17	15:32	16:47	19:17		20:47		0:32
Edmonton GC	Arr	6:44	/:44	8:44	10:49	12:19	14:19	15:34	16:49	19:19		20:49		0:34
		A	В	C	A _	C		B	C	A	В	C	A	C
				5.40	EC	monton - C	Jalgary Trai	n limetable	10.45	45.45	40.45	47.45	40.45	01.00
Edmonton GC	Dep			5:40	7:15	9:15	11:15	12:30	13:45	15:45	16:45	17:45	19:45	21:30
Strathcona	Dep			5:42	7:17	9:17	11:17	12:32	13:47	15:47	16:47	17:47	19:47	21:32
South Edmonton	Dep			5:47	7:22	9:22	11:22	12:37	13:52	15:52	16:52	17:52	19:52	21:37
Nisku	Dep			5:56	7:31	9:31	11:31	12:46	14:01	16:01	17:01	18:01	20:01	21:46
Leduc	Dep			6:00	7:35	9:35	11:35	12:50	14:05	16:05	17:05	18:05	20:05	21:50
Millet	Dep			6:10	7:45	9:45	11:45	13:00	14:15	16:15	17:15	18:15	20:15	22:00
Wetaskiwin	Dep			6:20	7:55	9:55	11:55	13:10	14:25	16:25	17:25	18:25	20:25	22:10
Maskwacis	Dep			6:29	8:04	10:04	12:04	13:19	14:34	16:34	17:34	18:34	20:34	22:19
Ponoka	Dep			6:40	8:15	10:15	12:15	13:30	14:45	16:45	17:45	18:45	20:45	22:30
Morningside	Dep			6:48	8:23	10:23	12:23	13:38	14:53	16:53	17:53	18:53	20:53	22:38
Lacombe	Dep			6:56	8:31	10:31	12:31	13:46	15:01	17:01	18:01	19:01	21:01	22:46
Blackfalds	Dep			7:03	8:38	10:38	12:38	13:53	15:08	17:08	18:08	19:08	21:08	22:53
Red Deer	Arr			7:14	8:49	10:49	12:49	14:04	15:19	17:19	18:19	19:19	21:19	23:04
	Dep	5:16	6:16	7:16	9:16	10:51	12:51	14:06	15:21	17:46		19:21		23:06
Penhold	Dep	5:25	6:25	7:25	9:25	11:00	13:00	14:15	15:30	17:55		19:30		23:15
Innisfail	Dep	5:34	6:34	7:34	9:34	11:09	13:09	14:24	15:39	18:04		19:39		23:24
Bowden	Dep	5:42	6:42	7:42	9:42	11:17	13:17	14:32	15:47	18:12		19:47		23:32
Olds	Dep	5:50	6:50	7:50	9:50	11:25	13:25	14:40	15:55	18:20		19:55		23:40
Didsbury	Dep	5:59	6:59	7:59	9:59	11:34	13:34	14:49	16:04	18:29		20:04		23:49
Carstairs	Dep	6:06	7:06	8:06	10:06	11:41	13:41	14:56	16:11	18:36		20:11		23:56
Crossfield	Dep	6:15	7:15	8:15	10:15	11:50	13:50	15:05	16:20	18:45		20:20		0:05
Airdrie	Dep	6:24	7:24	8:24	10:24	11:59	13:59	15:14	16:29	18:54		20:29		0:14
Country Hills Blvc	Dep	6:32	7:32	8:32	10:32	12:07	14:07	15:22	16:37	19:02		20:37		0:22
Calgary Tower	Arr	6:44	7:44	8:44	10:44	12:19	14:19	15:34	16:49	19:14		20:49		0:34

7.1 Infrastructure Costs

Infrastructure costs are taken from the Calgary Bow Valley mass Transit Feasibility Study 2019, and updated with the Calgary Banff Rail Study 2021, and incorporated into Table 7 in the Appendix. The total cost to build the required infrastructure would be CAD 345 million.

7.2 Rolling Stock

As stated in the Calgary Bow Valley Mass Transit Feasibility Study 2019, any additional track and structures in the Canadian Pacific Right of Way should be built to Canadian Pacific Standards and Specifications, and be freight compatible. With a major point of congestion being in the downtown Calgary area, it can be expected that any rolling stock used would also need to be freight compatible and adhere to CFR crash worthiness standards.

Fortunately there are sufficient examples of CFR compliant freight compatible rolling stock in use in Canada, Siemens Charger locomotives and Alstom/Bombardier bi-level passenger cars.

Siemens Charger SC-44 locomotive	\$ 9,250,000.00
Bombardier Bilevel passenger coach	\$ 3,730,000.00
Bombardier Bilevel passenger cab coach	\$ 4,130,000.00

Alstom/Bombardier bi-level passenger cars have a seated capacity of 142 passengers per car, which in a 5-car train is more than sufficient to cover the projected ridership. The Siemens and Alstom/Bombardier train-sets would have an operating speed of 160kph, and the capacity to operate at greater speeds of 180kph or more should the upgraded infrastructure allow. The cost of purchase for the required rolling stock would be CAD 142 million.

7.3 Operating Costs

Operating costs are taken from the Calgary Bow Valley Mass Transit Feasibility Study 2019, and the Calgary Banff Rail Study 2021, tabulated and applied to various service scenarios according to the time table above. See Table 9 in the Appendix. For a basic service, the annual operating cost would be at least CAD 75 million per year.

7.4 Internal Rate of Return

With the forecast revenue, infrastructure costs, rolling stock costs, and operating costs, we can calculate the Internal Rate of Return (IRR).

The fares are calculated by taking the existing fares charged for public transportation services within the corridor, and extrapolating them for the distance covered. Transit fares in Calgary and Edmonton are CAD3.60 and CAD3.50, the Airdrie ICE fare to downtown Calgary is CAD10.00, therefore a fare of CAD4.00 is used for proximal destinations, and with destinations along the corridor being equidistant a factor thereof can be used. See Table 10 in the Appendix.

Population growth in Airdrie has been occurring at an accelerated rate for the past decade, with 15 consecutive years of growth above 4.5% per year. The Calgary Metropolitan Region as a whole has experienced growth rates between 1.8% and 3.7% per year over the past decade, and is forecast to grow between 2.0% and 2.5% per year.

Figure 3.17 Population, historic (1994 to 2018) and projected (2019 to 2043) according to selected scenarios, Alberta

From the official census data 2016 & 2021 the population in the corridor has grown 6% in the past 5 years, which includes the coronavirus pandemic in 2020 & 2021 when national and international travel was severely restricted.

ALBERTA REGIONAL RAILWAY TRIANGLE RAILROAD HOLDING Co & RAIL CONCEPT

		Paga	Pagional Pail			IRR
		Daser	Regional Rall			8.88%
Year	Passenger Revenue	Operating costs	Rolling Stock	Infrastructure costs	Total Expenses	Balance
0	54,112,845.58	52,506,156	84,900,000	290,849,400	428,255,556	- 374,142,710
1	81,169,268.37	53,556,279			53,556,279	27,612,989
2	91,991,837.49	54,627,405			54,627,405	37,364,433
3	97,403,122.05	55,719,953			55,719,953	41,683,169
4	102,814,406.61	56,834,352			56,834,352	45,980,055
5	108,225,691.17	86,188,181	56,600,000	-	142,788,181	- 34,562,490
6	112,554,718.81	87,911,945			87,911,945	24,642,774
7	117,056,907.56	89,670,184			89,670,184	27,386,724
8	121,739,183.87	91,463,587			91,463,587	30,275,597
9	126,608,751.22	93,292,859			93,292,859	33,315,892
10	131,673,101.27	95,158,716			95,158,716	36,514,385
11	136,940,025.32	97,061,890			97,061,890	39,878,135
12	142,417,626.33	99,003,128			99,003,128	43,414,498
13	148,114,331.39	100,983,191			100,983,191	47,131,141
14	154,038,904.64	103,002,855			103,002,855	51,036,050
15	160,200,460.83	105,062,912	30,000,000		135,062,912	25,137,549
16	166,608,479.26	107,164,170			107,164,170	59,444,309
17	173,272,818.43	109,307,453			109,307,453	63,965,365
18	180,203,731.17	111,493,602			111,493,602	68,710,129
19	187,411,880.42	113,723,474			113,723,474	73,688,406
20	194,908,355.63	115,997,944			115,997,944	78,910,412
21	202,704,689.86	118,317,903			118,317,903	84,386,787
22	210,812,877.45	120,684,261			120,684,261	90,128,617
23	219,245,392.55	123,097,946			123,097,946	96,147,446
24	228,015,208.25	125,559,905			125,559,905	102,455,303
			-			
Total	2,594,558,092	1,763,732,292	171,500,000	290,849,400	2,226,081,692	368,476,400

7.5 Public Private Partnership

There are many different ways a Public Private Partnership (PPP) can be conducted, Governments may provide a capital subsidy in the form of a one-time grant so as to make the project economically viable. In other cases, Governments may support the project by providing revenue subsidies, including tax breaks or by guaranteed annual revenues for a fixed period.

To get projects moving quickly, the Federal Government is funding up to 50% of the eligible costs for projects. Canadians need immediate investments in their communities' public transit systems, so they can get to work on time, and back home at the end of the day. The Public Transit Infrastructure Fund is making these long overdue investments. Under the previous Building Canada Fund, funding could be used for up to 25% for private sector projects.

The Government of Canada has announced a historic plan to invest more the \$180 billion in infrastructure over 12 years. The priority is to promote infrastructure that will contribute to long-term economic growth, build inclusive communities, and support a low carbon, green economy. Key areas for investment include public transit, green and social infrastructure, transportation infrastructure that supports trade, and infrastructure in rural and northern communities.

The 2014 New Building Canada Fund (NBCF) is one component within the overall \$53-billion 2014 New Building Canada Plan (NBCP). It is a \$14-billion Fund to support projects of national,

regional and local significance that promote economic growth, job creation and productivity. The \$10-billion Provincial-Territorial Infrastructure Component (PTIC) which supports infrastructure projects of national, regional and local significance that contribute to economic growth, a clean environment, and stronger communities.

The Government of Alberta recently announced \$215 million over 5 years for the Alberta Community Transit Fund, to help expand Alberta's transit system, green Alberta's transit fleet, and increase transit ridership. Private and non-profit organizations can apply for funding in partnership with an eligible municipality.

As part of the Climate Leadership Plan, the Alberta Government will use revenue from the Carbon Levy to pay for initiatives that reduce emissions and support adaption and transmission to a lower carbon economy, including transit and infrastructure projects. Over the next 3 years, \$5.3 billion will be spent to advance climate leadership initiatives including public transit, innovative research, energy efficiency programs, infrastructure projects, and support to Indigenous communities.

The mission of the Canada Infrastructure Bank (CIB) is to work with provincial, territorial, municipal, federal, Indigenous and private sector investor partners to transform the way infrastructure is planned, financed and delivered in Canada. The CIB uses financial instruments including loans, equity, and where appropriate, loan guarantees to deliver federal support to projects to make them commercially viable. The CIB will provide financing and investment using a combination of these instruments depending on a project's unique characteristics. The Government of Canada sets the high-level policy priorities for the CIB, including:

- projects that support the Government's current priorities to invest in public transit, trade and transportation, and green infrastructure;
- projects that contribute to the objectives of the Investing in Canada Plan and the Pan-Canadian Framework on Clean Growth and Climate Change; and
- > projects generally eligible for cost sharing under federal infrastructure support programs.

Public Private Partnerships (P3) are increasingly used to execute large infrastructure projects, however they are considered more a financing rather than a funding mechanism. The P3 Canada Fund targets P3 infrastructure projects, and lists transit as one of the eligible categories. The amount of funding support, in combination with any other direct Federal assistance, may not exceed 25% of the project's direct construction costs. The level, form and conditions of any funding support will vary depending on the needs of a given project.

There are many examples of PPPs in operation across the globe, and also in Canada. Evaluating relevant examples and applying them to Regional Rail in the Calgary – Edmonton corridor creates a revised IRR calculation for regional passenger rail in the corridor of approximately 15% to 20%.

8. Regional Rail System with Express Services

The faster the mode of travel, the less time it takes between destinations, and therefore the greater the market share that mode will take. With the inclusion of express services in the Calgary – Edmonton corridor, that only service the principle urban areas of Calgary, Edmonton, and Red Deer, the speed of the services can be increased and the journey time between these destinations substantially reduced. By introducing Express services, ridership increases by over 3,500 passengers per day.

Utilizing a similar time table, express services would depart just prior to the regional rail service, so as not to be impacted by the frequently stopping regional service. With speeds up to 200kph, the journey time between Calgary and Edmonton would be less than 2hrs.

	Calg	gary - Edmo	onton Expre	ss Timetab	le	
Calgary Tower	Dep	6:50	9:10	13:40	17:40	21:25
Red Deer	Arr	7:47	10:07	14:37	18:37	22:22
Red Deel	Dep	7:52	10:12	14:42	18:42	22:27
Edmonton GC	Arr	8:50	11:10	15:40	19:40	23:25
	Edm	nonton - Ca	lgary Expre	ss Timetab	le	
Edmonton GC	Dep	6:50	9:10	13:40	17:40	21:25
Red Deer	Arr	7:48	10:08	14:38	18:38	22:23
	Dep	7:53	10:13	14:43	18:43	22:28
Calgary Tower	Arr	8:50	11:10	15:40	19:40	23:25

8.1 Infrastructure Costs

Infrastructure costs are taken from the Calgary Bow Valley mass Transit Feasibility Study 2019, and updated with the Calgary Banff Rail Study 2021, and incorporated into Table 8 in the Appendix. For express services, the entire length of track would have to be upgraded and twinned to ensure higher operating speeds and eliminate any potential for conflicts with regional and freight services. The total cost to build the required infrastructure would be CAD 2,155 million.

8.2 Rolling Stock

The same rolling stock would be used for the express services as would be used for the regional services, with a top speed of 200kph, to ensure compatibility across the service and network. The cost of purchase for the required rolling stock would be CAD 283 million.

8.3 Operating Costs

Operating costs are taken from the Calgary Bow Valley Mass Transit Feasibility Study 2019, and updated with the Calgary Banff Rail Study 2021, tabulated and applied to various service scenarios according to the time table above. See Table 9 in the Appendix. For the full service, including express trains, the annual operating cost would be approximately CAD 122 million per year.

8.4 Internal Rate of Return

With the forecast revenue, infrastructure costs, rolling stock costs, and operating costs, we can calculate the Internal Rate of Return (IRR).

As with the regional rail service, the fares are calculated by taking the existing fares charged for public transportation services within the corridor, and extrapolating them for the distance covered. A fare of CAD4.00 is maintained for proximal destinations, and the fare of CAD76.00 is maintained for express services between Edmonton and Calgary. See Table 10 in the Appendix. The same population growth as calculated for regional rail is expected for the regional and

express service scenario.

		Decised F	oil and Everage			IRR
		Regional P	call and Express			-0.98%
Year	Passenger Revenue	Operating costs	Rolling Stock	Infrastructure costs	Total Expenses	Balance
0	54,112,845.58	75,444,032	141,500,000	346,264,400	563,208,432	- 509,095,586
1	81,169,268.37	76,952,913			76,952,913	4,216,356
2	91,991,837.49	78,491,971			78,491,971	13,499,867
3	97,403,122.05	103,220,493	56,600,000	854,626,353	1,014,446,846	- 917,043,724
4	102,814,406.61	105,284,903			105,284,903	- 2,470,496
5	173,090,475.97	141,902,651	84,900,000	889,153,258	1,115,955,909	- 942,865,433
6	193,454,061.38	144,740,704			144,740,704	48,713,357
7	203,635,854.08	147,635,518			147,635,518	56,000,336
8	211,781,288.25	150,588,228			150,588,228	61,193,060
9	220,252,539.78	153,599,993			153,599,993	66,652,547
10	229,062,641.37	156,671,993			156,671,993	72,390,648
11	238,225,147.02	159,805,433			159,805,433	78,419,714
12	247,754,152.91	163,001,541			163,001,541	84,752,612
13	257,664,319.02	166,261,572			166,261,572	91,402,747
14	267,970,891.78	169,586,804			169,586,804	98,384,088
15	278,689,727.45	172,978,540	60,000,000		232,978,540	45,711,188
16	289,837,316.55	176,438,111			176,438,111	113,399,206
17	301,430,809.21	179,966,873			179,966,873	121,463,936
18	313,488,041.58	183,566,210			183,566,210	129,921,831
19	326,027,563.25	187,237,534			187,237,534	138,790,029
20	339,068,665.78	190,982,285			190,982,285	148,086,381
21	352,631,412.41	194,801,931			194,801,931	157,829,482
22	366,736,668.90	198,697,969			198,697,969	168,038,699
23	381,406,135.66	202,671,929			202,671,929	178,734,207
24	396,662,381.09	206,725,367			206,725,367	189,937,014
						-
Total	4,179,856,310	2,893,376,017	343,000,000	2,090,044,010	5,326,420,027	- 1,146,563,717

8.5 Public Private Partnership

There are many different ways a Public Private Partnership (PPP) can be conducted, Governments may provide a capital subsidy in the form of a one-time grant so as to make the project economically viable. In other cases, Governments may support the project by providing revenue subsidies, including tax breaks or by guaranteed annual revenues for a fixed period.

There are many examples of PPPs in operation across the globe, and also in Canada. Evaluating relevant examples and applying them to Regional & Express Rail in the Calgary – Edmonton corridor creates a revised IRR of between 1.5% and 8.6%.

9. ECONOMIC IMPACT

The ARR Red Deer Commuter and Calgary – Edmonton corridor trains will be geared towards carrying commuters to downtown Calgary and Edmonton, and back during peak travel periods in the morning and afternoon. Peak service can be adjusted to meet demands. During peak periods the ARR journey time would be faster than the journey time by car. Even when roads are not congested, ARR transit times would be attractive, taking into account reduced stress, the ability to make more productive use of time, and increased reliability and predictability.

Equally important, ARR would provide major economic benefits. Workers would have access to a wider range of jobs, and employers would be able to draw employees from a wider pool as connections across the region make it more convenient for workers to live in one area and work in another. Better matching workers and jobs means more productivity and more competitive businesses. Moreover, by relieving traffic congestion, ARR would reduce costs for businesses.

The development of an Alberta Regional Rail system will provide an integrating force for the communities of the Calgary-Edmonton corridor. It will provide opportunities to fundamentally change the character of business, while expanding the level of social, personal and tourist interaction. It will support existing manufacturing and service industry, while fostering the growth of new businesses and attract the "New Economy" businesses including high-tech/high value-added industry tied to computer, telecommunications and professional services businesses.

Implementation of an Alberta Regional Rail system will encourage businesses to distribute their operations more widely in the highly accessible smaller communities. These communities provide a high quality of life for residents in terms of lower cost housing, good schools, friendly neighbourhoods, and less congested roads. Alberta Regional Rail will offer an energy-efficient and cost-effective alternative to automobile and air travel that businesses and individuals will be able to use to connect with all of the towns and cities in the Calgary-Edmonton corridor, Calgary-Banff corridor, and beyond. Alberta Regional Rail system will provide a level of service that will be critical to attracting and developing "New Economy" businesses.

The entire province would also benefit from the environmental impact, which would include reduced carbon dioxide emissions, particulates, and other air contaminants. ARR would be powered with electricity, which can be generated from more sustainable and non-polluting sources, and clean air generators. ARR trains will also be equipped with regenerative braking so that power is returned to the system as trains stop.

Alberta Regional Rail would support the region and its growing travel demands by providing needed transportation system capacity and attractive travel options in terms of speed, convenience, comfort and reliability. It is a financially affordable investment and would create a financially sustainable backbone for transit systems far into the future. It would create net value as the benefits to citizens and businesses would exceed its cost.

10. CONCLUSIONS

Now, it is time to conclude this report putting the main results in clear evidence.

Using this basic Gravity Model calculation, we estimate regional rail ridership to be in the region of 5.2 million passengers per year.

Due to the nature of Calgary being the financial and business hub, Edmonton being the Government Centre with the Provincial Legislature, and the corridor being an established Industrial Corridor, the overall ridership can be estimated to be significantly larger than what is calculated through this Gravity Model.

This Gravity Model does not take into account the potential ridership draw of the Calgary International Airport, nor the Edmonton International Airport and nearby outlet mall, both of which could be easily connected to the regional rail system by means of an automated people mover.

Also not taken into account is the status of the Calgary – Edmonton corridor being an established Industrial Corridor, with travel from within the corridor to the business hub of Calgary and the Government Centre of Edmonton.

Taking into account these factors, the economics of regional and express rail services would improve, creating an IRR greater than the calculated 9.51% for a basic regional rail service.

A Public Private Partnership venture could be engaged in, that would further improve the economics of regional and express passenger rail services in the corridor, depending upon the value of Federal and Provincial grants and funds, or amount of subsidy approved.

The Reseau Electrique Metropolitain (REM) in Montreal is a recent mass transit PPP infrastructure investment between the Caisse de Depot et Placement du Quebec, the Government of Quebec, and the Government of Canada. The Government of Quebec and the Government of Canada each committed CAD 1.28 billion to the CAD 6.9 billion cost of the project, resulting in CDPQ Infra covering the remaining 63% of the infrastructure costs. If a similar formula is adopted for the regional and express passenger rail services in the Calgary – Edmonton corridor, the IRR would calculate out to be 3.21%

More studies need to be done in order to explore all the solutions, including a full feasibility study that will outline the socio-economic benefits, as well as environmental and wildlife impact assessments, and a capacity study of the CPR Right of Way within the corridor. Relations & Connections with Railways will be required in order to have access to the Tracks and Stations.

APPENDIX

Table 1 – Distances between Towns & Cities

Table 2 – Potential Attraction between Towns & Cities

Table 3 – Potential Repulsion between Towns & Cities

 Table 4 – Potential Total Traffic between Towns & Cities

Table 5 – Market Share of a Regional Rail System between Towns & Cities

Table 6 - Market Share of a Regional Rail and Express System between Towns & Cities

Table 7 – Regional Rail Infrastructure Cost Estimate

Table 8 - Regional Rail & Express Infrastructure Cost Estimate

Table 9 – Regional Rail & Express Service Operating Cost Estimates

Table 10 – Calgary to Edmonton Regional Rail Fare Table

Table 1 - Distances Between Towns & Cities

Distance between KM	Calgary	Airdrie	Cro	ossfeild	Carstairs	Didsbury	Olds E	owden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morningside	Ponoka	Maskwacis	Wetaskiwin	Millet Le	educ	Nisku	Edmonton
Calgary		0	36.4	50.2	66.2	2 79.	5 99.5	118	131.	5 146	160.1	178	.3 19	204.	9 217.2	237.9	255.4	271.9	293.2	30 ⁻	.9 323.9
Airdrie		36.4	0	13.8	29.8	3 43.	1 63.1	81.6	95.	1 109.6	123.7	141	.9 153	.6 168.	5 180.8	201.5	219	235.5	256.8	26	5.5 287.5
Crossfield		50.2	13.8	0	10	6 29.3	3 49.3	67.8	81.3	3 95.8	109.9	128	.1 139	.8 154.	7 167	187.7	205.2	221.7	243	25 [.]	.7 273.7
Carstairs		66.2	29.8	16	() 13.3	3 33.3	51.8	65.3	3 79.8	93.9	112	.1 123	.8 138.	7 15 [.]	171.7	189.2	205.7	227	23	5.7 257.7
Didsbury		79.5	43.1	29.3	13.3	3 (20	38.5	5	2 66.5	80.6	98	.8 110	.5 125.4	4 137.7	158.4	175.9	192.4	213.7	222	.4 244.4
Olds		99.5	63.1	49.3	33.3	3 20	0 0	18.5	3	2 46.5	60.6	78	.8 90	.5 105.4	4 117.7	138.4	155.9	172.4	193.7	202	.4 224.4
Bowden		118	81.6	67.8	51.8	38.	5 18.5	0	13.	5 28	42.1	60	.3	72 86.	9 99.2	119.9	137.4	153.9	175.2	183	.9 205.9
Innisfail		131.5	95.1	81.3	65.3	3 52	2 32	13.5		14.5	28.6	46	.8 58	.5 73.4	4 85.7	106.4	123.9	140.4	161.7	170).4 192.4
Penhold		146	109.6	95.8	79.8	66.	5 46.5	28	14.	5 0	14.1	32	.3 4	14 58.	9 71.2	91.9	109.4	125.9	147.2	15	o.9 177.9
Red Deer		160.1	123.7	109.9	93.9	9 80.0	60.6	42.1	28.	6 14.1	C	18	.2 29	.9 44.	8 57.1	77.8	95.3	111.8	133.1	14	.8 163.8
Blackfalds		178.3	141.9	128.1	112.1	1 98.8	8 78.8	60.3	46.	3 32.3	18.2		0 11	.7 26.	6 38.9	59.6	77.1	93.6	114.9	123	3.6 145.6
Lacombe		190	153.6	139.8	123.8	B 110.	5 90.5	72	58.	5 44	29.9	11	.7	0 14.	9 27.2	47.9	65.4	81.9	103.2	11	.9 133.9
Morningside		204.9	168.5	154.7	138.	7 125.4	4 105.4	86.9	73.4	4 58.9	44.8	26	.6 14	.9	0 12.3	33	50.5	67	88.3		97 119
Ponoka		217.2	180.8	167	15 [.]	1 137.	7 117.7	99.2	85.	7 71.2	57.1	38	.9 27	.2 12.3	3 (20.7	38.2	54.7	76	84	i.7 106.7
Maskwacis		237.9	201.5	187.7	171.	7 158.4	4 138.4	119.9	106.4	4 91.9	77.8	59	.6 47	.9 3	3 20.7	0	17.5	34	55.3		64 86
Wetaskiwin		255.4	219	205.2	189.2	2 175.9	9 155.9	137.4	123.	9 109.4	95.3	77	.1 65	.4 50.	5 38.2	17.5	0	16.5	37.8	46	5.5 68.5
Millet		271.9	235.5	221.7	205.	7 192.4	4 172.4	153.9	140.4	4 125.9	111.8	93	.6 81	.9 6	7 54.7	34	16.5	0	21.3		30 52
Leduc		293.2	256.8	243	22	7 213.	7 193.7	175.2	161.	7 147.2	133.1	114	.9 103	.2 88.	3 76	55.3	37.8	21.3	0	8	30.7
Nisku		301.9	265.5	251.7	235.	7 222.4	4 202.4	183.9	170.4	4 155.9	141.8	123	.6 111	.9 9	7 84.7	64	46.5	30	8.7		0 22
Edmonton		323.9	287.5	273.7	257.	7 244.4	4 224.4	205.9	192.4	4 177.9	163.8	145	.6 133	.9 11	9 106.7	86	68.5	52	30.7		22 0

Table 2 - Potential Attraction Between Towns & Cities

Potential Attraction	Calgary	Airdrie	Crossfield	Carstairs	Didsbury	Olds E	Bowden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morningside	Ponoka	Maskwacis	Wetaskiwin	Millet	Leduc	Nisku	Edmonton	Total
Calgary	0	96832.6944	4703.115616	6400.628032	6625.39488	12034.17386	1672.68352	10434.67024	4552.835456	131781.3257	13682.02848	13437.65987	156.81408	13065.22643	26879.2401	16457.6377	2469.82176	63392.09184	39.20352	1321026.639	1745643.884
Airdrie	96832.6944	0	266.6859	362.9418	375.687	682.3869	94.848	591.6885	258.1644	7472.5404	775.827	761.9703	8.892	740.8518	1524.1629	933.2154	140.049	3594.591	2.223	74907.6159	190327.0356
Crossfield	4703.115616	266.6859	0	17.627902	18.24693	33.143191	4.60672	28.738015	12.538916	362.937556	37.68153	37.008517	0.43188	35.982802	74.027831	45.325806	6.80211	174.58749	0.10797	3638.225501	9497.822183
Carstairs	6400.628032	362.9418	17.627902	0	24.83286	45.105682	6.26944	39.11053	17.064632	493.933912	51.28206	50.366134	0.58776	48.970204	100.746962	61.685412	9.25722	237.60198	0.14694	4951.383302	12919.54276
Didsbury	6625.39488	375.687	18.24693	24.83286	0	46.68963	6.4896	40.48395	17.66388	511.27908	53.0829	52.13481	0.6084	50.68986	104.28483	63.85158	9.5823	245.9457	0.1521	5125.25793	13372.35822
Olds	12034.17386	682.3869	33.143191	45.105682	46.68963	0	11.78752	73.533865	32.084156	928.672396	96.41823	94.696147	1.10508	92.071582	189.419921	115.978146	17.40501	446.72859	0.27627	9309.368891	24251.04506
Bowden	1672.68352	94.848	4.60672	6.26944	6.4896	11.78752	0	10.2208	4.45952	129.08032	13.4016	13.16224	0.1536	12.79744	26.32832	16.12032	2.4192	62.0928	0.0384	1293.95072	3380.91008
Innisfail	10434.67024	591.6885	28.738015	39.11053	40.48395	73.533865	10.2208	0	27.81974	805.23934	83.60295	82.109755	0.9582	79.83403	164.243465	100.56309	15.09165	387.35235	0.23955	8072.028515	21037.52854
Penhold	4552.835456	258.1644	12.538916	17.064632	17.66388	32.084156	4.45952	27.81974	0	351.340496	36.47748	35.825972	0.41808	34.833032	71.662396	43.877496	6.58476	169.00884	0.10452	3521.972116	9194.735888
Red Deer	131781.3257	7472.5404	362.937556	493.933912	511.27908	928.672396	129.08032	805.23934	351.340496	0	1055.83668	1036.978852	12.10128	1008.238312	2074.260236	1270.029336	190.59516	4891.94244	3.02532	101943.0988	256322.4556
Blackfalds	13682.02848	775.827	37.68153	51.28206	53.0829	96.41823	13.4016	83.60295	36.47748	1055.83668	0	107.66301	1.2564	104.67906	215.35743	131.85918	19.7883	507.8997	0.3141	10584.11253	27558.56862
Lacombe	13437.65987	761.9703	37.008517	50.366134	52.13481	94.696147	13.16224	82.109755	35.825972	1036.978852	107.66301	0	1.23396	102.809434	211.511027	129.504102	19.43487	498.82833	0.30849	10395.07442	27068.28024
Morningside	156.81408	8.892	0.43188	0.58776	0.6084	1.10508	0.1536	0.9582	0.41808	12.10128	1.2564	1.23396	0	1.19976	2.46828	1.51128	0.2268	5.8212	0.0036	121.30788	317.09952
Ponoka	13065.22643	740.8518	35.982802	48.970204	50.68986	92.071582	12.79744	79.83403	34.833032	1008.238312	104.67906	102.809434	1.19976	0	205.648862	125.914812	18.89622	485.00298	0.29994	10106.9682	26320.91476
Maskwacis	26879.2401	1524.1629	74.027831	100.746962	104.28483	189.419921	26.32832	164.243465	71.662396	2074.260236	215.35743	211.511027	2.46828	205.648862	0	259.045986	38.87541	997.80219	0.61707	20793.18153	53932.88474
Wetaskiwin	16457.6377	933.2154	45.325806	61.685412	63.85158	115.978146	16.12032	100.56309	43.877496	1270.029336	131.85918	129.504102	1.51128	125.914812	259.045986	0	23.80266	610.93494	0.37782	12731.26201	33122.49707
Millet	2469.82176	140.049	6.80211	9.25722	9.5823	17.40501	2.4192	15.09165	6.58476	190.59516	19.7883	19.43487	0.2268	18.89622	38.87541	23.80266	0	91.6839	0.0567	1910.59911	4990.97214
Leduc	63392.09184	3594.591	174.58749	237.60198	245.9457	446.72859	62.0928	387.35235	169.00884	4891.94244	507.8997	498.82833	5.8212	485.00298	997.80219	610.93494	91.6839	0	1.4553	49038.71049	125840.0821
Nisku	39.20352	2.223	0.10797	0.14694	0.1521	0.27627	0.0384	0.23955	0.10452	3.02532	0.3141	0.30849	0.0036	0.29994	0.61707	0.37782	0.0567	1.4553	0	30.32697	79.27758
Edmonton	1321026.639	74907.6159	3638.225501	4951.383302	5125.25793	9309.368891	1293.95072	8072.028515	3521.972116	101943.0988	10584.11253	10395.07442	121.30788	10106.9682	20793.18153	12731.26201	1910.59911	49038.71049	30.32697	0	1649501.084
Total	1745643.884	190327.0356	9497.822183	12919.54276	13372.35822	24251.04506	3380.91008	21037.52854	9194.735888	256322.4556	27558.56862	27068.28024	317.09952	26320.91476	53932.88474	33122.49707	4990.97214	125840.0821	79.27758	1649501.084	4234678.979
Ratio	0.412225789	0.044944856	0.002242867	0.003050891	0.003157821	0.005726773	0.000798386	0.004967916	0.002171295	0.060529371	0.006507829	0.00639205	7.48816E-05	0.006215563	0.012736003	0.007821726	0.001178595	0.029716558	1.8721E-05	0.389522108	1

Table 3 - Potential Repulsion Between Towns & Cities

Repulsion	Calgary	Airdrie	Crossfeild	Carstairs [Didsbury	Olds	Bowden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morningside	Ponoka	Maskwacis	Wetaskiwin	Millet	Leduc	Nisku	Edmonton	Total
Calgary	C	5.29984	10.08016	17.52976	25.281	39.601	55.696	69.169	85.264	102.52804	127.16356	144.4	167.93604	188.70336	226.38564	260.91664	295.71844	343.86496	364.57444	419.64484	2949.75672
Airdrie	5.29984	L 0	0.76176	3.55216	7.43044	15.92644	26.63424	36.17604	48.04864	61.20676	80.54244	94.37184	113.569	130.75456	162.409	191.844	221.841	263.78496	281.961	330.625	2076.73912
Crossfeild	10.08016	0.76176	0	1.024	3.43396	9.72196	18.38736	26.43876	36.71056	48.31204	65.63844	78.17616	95.72836	111.556	140.92516	168.42816	196.60356	236.196	253.41156	299.64676	1801.18072
Carstairs	17.52976	3.55216	1.024	0	0.70756	4.43556	10.73296	17.05636	25.47216	35.26884	50.26564	61.30576	76.95076	91.204	117.92356	143.18656	169.24996	206.116	222.21796	265.63716	1519.83672
Didsbury	25.281	7.43044	3.43396	0.70756	0	1.6	5.929	10.816	17.689	25.98544	39.04576	48.841	62.90064	75.84516	100.36224	123.76324	148.07104	182.67076	197.84704	238.92544	1317.14472
Olds	39.601	15.92644	9.72196	4.43556	1.6	0	1.369	4.096	8.649	14.68944	24.83776	32.761	44.43664	55.41316	76.61824	97.21924	118.88704	150.07876	163.86304	201.42144	1065.62472
Bowden	55.696	26.63424	18.38736	10.73296	5.929	1.369	0	0.729	3.136	7.08964	14.54436	20.736	30.20644	39.36256	57.50404	75.51504	94.74084	122.78016	135.27684	169.57924	889.94872
Innisfail	69.169	36.17604	26.43876	17.05636	10.816	4.096	0.729	0	0.841	3.27184	8.76096	13.689	21.55024	29.37796	45.28384	61.40484	78.84864	104.58756	116.14464	148.07104	796.31272
Penhold	85.264	48.04864	36.71056	25.47216	17.689	8.649	3.136	0.841	0	0.79524	4.17316	7.744	13.87684	20.27776	33.78244	47.87344	63.40324	86.67136	97.21924	126.59364	728.22072
Red Deer	102.52804	61.20676	48.31204	35.26884	25.98544	14.68944	7.08964	3.27184	0.79524	0	1.32496	3.57604	8.02816	13.04164	24.21136	36.32836	49.99696	70.86244	80.42896	107.32176	694.26792
Blackfalds	127.16356	80.54244	65.63844	50.26564	39.04576	24.83776	14.54436	8.76096	4.17316	1.32496	0	0.54756	2.83024	6.05284	14.20864	23.77764	35.04384	52.80804	61.10784	84.79744	697.47112
Lacombe	144.4	94.37184	78.17616	61.30576	48.841	32.761	20.736	13.689	7.744	3.57604	0.54756	0	0.88804	2.95936	9.17764	17.10864	26.83044	42.60096	50.08644	71.71684	727.51672
Morningside	167.93604	113.569	95.72836	76.95076	62.90064	44.43664	30.20644	21.55024	13.87684	8.02816	2.83024	0.88804	0	0.60516	4.356	10.201	17.956	31.18756	37.636	56.644	797.48712
Ponoka	188.70336	130.75456	111.556	91.204	75.84516	55.41316	39.36256	29.37796	20.27776	13.04164	6.05284	2.95936	0.60516	0	1.71396	5.83696	11.96836	23.104	28.69636	45.53956	882.01272
Maskwacis	226.38564	162.409	140.92516	117.92356	100.36224	76.61824	57.50404	45.28384	33.78244	24.21136	14.20864	9.17764	4.356	1.71396	0	1.225	4.624	12.23236	16.384	29.584	1078.91112
Wetaskiwin	260.91664	191.844	168.42816	143.18656	123.76324	97.21924	75.51504	61.40484	47.87344	36.32836	23.77764	17.10864	10.201	5.83696	1.225	0	1.089	5.71536	8.649	18.769	1298.85112
Millet	295.71844	221.841	196.60356	169.24996	148.07104	118.88704	94.74084	78.84864	63.40324	49.99696	35.04384	26.83044	17.956	11.96836	4.624	1.089	0	1.81476	3.6	10.816	1551.10312
Leduc	343.86496	263.78496	236.196	206.116	182.67076	150.07876	122.78016	104.58756	86.67136	70.86244	52.80804	42.60096	31.18756	23.104	12.23236	5.71536	1.81476	C	0.30276	3.76996	1941.14872
Nisku	364.57444	281.961	253.41156	222.21796	197.84704	163.86304	135.27684	116.14464	97.21924	80.42896	61.10784	50.08644	37.636	28.69636	16.384	8.649	3.6	0.30276	C	1.936	2121.34312
Edmonton	419.64484	330.625	299.64676	265.63716	238.92544	201.42144	169.57924	148.07104	126.59364	107.32176	84.79744	71.71684	56.644	45.53956	29.584	18.769	10.816	3.76996	1.936	0	2631.03912
Total	2949.75672	2076.73912	1801.18072	1519.83672	1317.14472	1065.62472	889.94872	796.31272	728.22072	694.26792	697.47112	727.51672	797.48712	882.01272	1078.91112	1298.85112	1551.10312	1941.14872	2121.34312	2631.03912	27565.9168
Ratio	0.107007387	0.075337205	0.06534086	0.055134634	0.04778164	0.038657329	0.032284387	0.028887583	0.026417432	0.025185737	0.025301938	0.026391893	0.028930187	0.031996495	0.039139316	0.047118009	0.056268875	0.070418435	0.07695529	0.09544537	1

Table 4 - Potential Total Traffic Between Towns & Cities

Potential Traffic Index	Calgary	Airdrie	Crossfield	Carstairs	Didsbury	Olds	Bowden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morningside	Ponoka	Maskwacis	Wetaskiwin	Millet	Leduc	Nisku	Edmonton	Total
Calgary	0	18270.87127	466.5715243	365.1292449	262.070127	303.8856053	30.0323815	150.8576131	53.3969255	5 1285.319857	107.5939403	93.05858637	0.933772643	69.23685107	118.7320896	63.07622885	8.35193693	184.3517055	0.107532278	3147.963499	24981.54069
Airdrie	18270.87127	0	350.0917612	102.1749583	50.56053208	42.8461665	3.561130334	16.35581175	5.37298038	122.0868479	9.63252417	8.074127833	0.078296014	5.66597295	9.384719443	4.86444924	0.631303501	13.62697479	0.007884069	226.5636776	19242.45139
Crossfield	466.5715243	350.0917612	0	17.21474805	5.313669932	3.40910588	0.250537326	1.086965312	0.341561556	7.512362467	0.574077172	0.473399013	0.004511516	0.322553713	0.525298896	0.269110617	0.034598102	0.739163618	0.000426066	12.1417148	866.8770895
Carstairs	365.1292449	102.1749583	17.21474805	0	35.09647238	10.16910649	0.584129634	2.293017385	0.669932664	14.00482443	1.02022097	0.821556311	0.007638131	0.536930442	0.854341253	0.430804483	0.054695552	1.152758544	0.000661243	18.63964854	570.8556897
Didsbury	262.070127	50.56053208	5.313669932	35.09647238	0	29.18101875	1.094552201	3.74296875	0.998579908	19.67559834	1.359504848	1.067439446	0.009672398	0.668333484	1.039084321	0.515917166	0.064714207	1.346387895	0.000768776	21.45128593	435.2566278
Olds	303.8856053	42.8461665	3.40910588	10.16910649	29.18101875	0	8.610314098	17.95260376	3.709579836	63.2204084	3.881921317	2.890514545	0.024868667	1.661547221	2.472256228	1.192954666	0.146399557	2.976627672	0.001685981	46.21836132	544.4510462
Bowden	30.0323815	3.561130334	0.250537326	0.584129634	1.094552201	8.610314098	0	14.02030178	1.422040816	18.20689344	0.921429338	0.634753086	0.005085008	0.325117066	0.457851657	0.213471648	0.025534922	0.5057234	0.000283862	7.630360414	88.50189153
Innisfail	150.8576131	16.35581175	1.086965312	2.293017385	3.74296875	17.95260376	14.02030178	0	33.07935791	246.1120776	9.542669981	5.99822887	0.044463542	2.717480383	3.626977416	1.637706246	0.191400258	3.703617811	0.002062514	54.51456622	567.4798906
Penhold	53.3969255	5.37298038	0.341561556	0.669932664	0.998579908	3.709579836	1.422040816	33.07935791	(441.8043559	8.740973267	4.626287707	0.030127897	1.717794865	2.121291298	0.916531087	0.10385526	1.9499964	0.001075096	27.82108261	588.82433
Red Deer	1285.319857	122.0868479	7.512362467	14.00482443	19.67559834	63.2204084	18.20689344	246.1120776	441.8043559	9 0	796.8819285	289.9796568	1.507354114	77.30916603	85.67301614	34.95972117	3.812134978	69.03434937	0.037614809	949.8828453	4527.021013
Blackfalds	107.5939403	9.63252417	0.574077172	1.02022097	1.359504848	3.881921317	0.921429338	9.542669981	8.740973267	796.8819285	0	196.6232194	0.44391995	17.2942057	15.15679404	5.545511666	0.564672707	9.617847964	0.005140093	124.8164158	1310.216917
Lacombe	93.05858637	8.074127833	0.473399013	0.821556311	1.067439446	2.890514545	0.634753086	5.99822887	4.626287707	289.9796568	196.6232194	0	1.389532003	34.74042834	23.04634165	7.569514701	0.724358974	11.70932134	0.006159152	144.9460743	828.3794998
Morningside	0.933772643	0.078296014	0.004511516	0.007638131	0.009672398	0.024868667	0.005085008	0.044463542	0.030127897	1.507354114	0.44391995	1.389532003	0	1.982550069	0.566639118	0.148150181	0.012630875	0.186651344	9.56531E-05	2.141583928	9.517543052
Ponoka	69.23685107	5.66597295	0.322553713	0.536930442	0.668333484	1.661547221	0.325117066	2.717480383	1.717794865	5 77.30916603	17.2942057	34.74042834	1.982550069	0	119.9846332	21.57198473	1.578847896	20.99216499	0.010452197	221.938205	600.2552194
Maskwacis	118.7320896	9.384719443	0.525298896	0.854341253	1.039084321	2.472256228	0.457851657	3.626977416	2.121291298	85.67301614	15.15679404	23.04634165	0.566639118	119.9846332	0	211.466111	8.407311851	81.57070181	0.037662964	702.8522692	1387.975391
Wetaskiwin	63.07622885	4.86444924	0.269110617	0.430804483	0.515917166	1.192954666	0.213471648	1.637706246	0.916531087	34.95972117	5.545511666	7.569514701	0.148150181	21.57198473	211.466111	0	21.85735537	106.8935185	0.043683663	678.3132829	1161.486008
Millet	8.35193693	0.631303501	0.034598102	0.054695552	0.064714207	0.146399557	0.025534922	0.191400258	0.10385526	3.812134978	0.564672707	0.724358974	0.012630875	1.578847896	8.407311851	21.85735537	0	50.52122595	0.01575	176.6456278	273.7443547
Leduc	184.3517055	13.62697479	0.739163618	1.152758544	1.346387895	2.976627672	0.5057234	3.703617811	1.9499964	69.03434937	9.617847964	11.70932134	0.186651344	20.99216499	81.57070181	106.8935185	50.52122595	0	4.806777646	13007.75353	13573.43904
Nisku	0.107532278	0.007884069	0.000426066	0.000661243	0.000768776	0.001685981	0.000283862	0.002062514	0.001075096	0.037614809	0.005140093	0.006159152	9.56531E-05	0.010452197	0.037662964	0.043683663	0.01575	4.806777646	0	15.66475723	20.75047329
Edmonton	3147.963499	226.5636776	12.1417148	18.63964854	21.45128593	46.21836132	7.630360414	54.51456622	27.82108261	949.8828453	124.8164158	144.9460743	2.141583928	221.938205	702.8522692	678.3132829	176.6456278	13007.75353	15.66475723	0	19587.89879
Total	24981.54069	19242.45139	866.8770895	570.8556897	435.2566278	544.4510462	88.50189153	567.4798906	588.82433	4527.021013	1310.216917	828.3794998	9.517543052	600.2552194	1387.975391	1161.486008	273.7443547	13573.43904	20.75047329	19587.89879	91166.92289
Ratio	0.274019786	0.211068343	0.00950868	0.006261654	0.004774282	0.005972024	0.000970768	0.006224625	0.00645875	0.049656398	0.014371626	0.009086404	0.000104397	0.006584134	0.01522455	0.012740213	0.003002672	0.148885567	0.00022761	0.214857518	1

Table 5 - Market Share of a Regional Rail System Between Towns & Cities

Potential Market Index	Calgary	Airdrie	Crossfield	Carstairs	Didsbury	Olds	Bowden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morningside	Ponoka	Maskwacis	Wetaskiwin	Millet	Leduc	Nisku	Edmonton	Total
Calgary	-	3,131	81	65	47	56	6	29	10	251	21	19	0	14	25	13	2	41	0	713	4523.316032
Airdrie	3,131	-	58	17	9	8	1	3	1	23	2	2	0	1	2	1	0	3	0	50	3310.956574
Crossfield	81	58	-	3	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	3	148.9585101
Carstairs	65	17	3	-	6	2	0	0	0	3	0	0	0	0	0	0	0	0	0	4	100.6376638
Didsbury	47	9	1	6	-	5	0	1	0	4	0	0	0	0	0	0	0	0	0	5	77.7344946
Olds	56	8	1	2	5	-	1	3	1	11	1	1	0	0	0	0	0	1	0	10	99.28639877
Bowden	6	1	0	0	0	1	-	2	0	3	0	0	0	0	0	0	0	0	0	2	15.88315564
Innisfail	29	3	0	0	1	3	2	-	6	42	2	1	0	0	1	0	0	1	0	11	101.5012791
Penhold	10	1	0	0	0	1	0	6	-	74	1	1	0	0	0	0	0	0	0	6	100.9381264
Red Deer	251	23	1	3	4	11	3	42	74	-	134	49	0	14	15	6	1	13	0	186	829.5750565
Blackfalds	21	2	0	0	0	1	0	2	1	134	-	33	0	3	3	1	0	2	0	24	226.9069348
Lacombe	19	2	0	0	0	1	0	1	1	49	33	-	0	6	4	1	0	2	0	28	146.5820456
Morningside	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	1.686958105
Ponoka	14	1	0	0	0	0	0	0	0	14	3	6	0	-	20	4	0	4	0	41	108.5680291
Maskwacis	25	2	0	0	0	0	0	1	0	15	3	4	0	20	-	35	1	14	0	127	249.5717572
Wetaskiwin	13	1	0	0	0	0	0	0	0	6	1	1	0	4	35	-	4	18	0	120	205.8066277
Millet	2	0	0	0	0	0	0	0	0	1	0	0	0	0	1	4	-	9	0	31	47.69441328
Leduc	41	3	0	0	0	1	0	1	0	13	2	2	0	4	14	18	9	-	1	2,215	2323.679533
Nisku	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-	3	3.494425792
Edmonton	713	50	3	4	5	10	2	11	6	186	24	28	0	41	127	120	31	2,215	3	-	3576.333705
Total	4523.316032	2 3310.956574	148.9585101	100.6376638	77.7344946	99.28639877	15.88315564	101.5012791	100.938126	4 829.5750565	226.9069348	146.5820456	1.686958105	108.5680291	249.5717572	205.8066277	47.69441328	3 2323.679533	3.494425792	3576.333705	16199.11172
Ratio	0.2792323	0.204391243	0.009195474	0.006212542	0.004798689	0.006129126	0.000980495	0.006265855	0.0062310	0.05121114	0.014007369	0.009048771	0.000104139	0.006702098	0.015406509	0.012704809	0.002944261	0.143444874	0.000215717	0.220773445	1

Table 6 - Market Share of a Regional Rail and Express System Between Towns & Cities

Potential Market Index	Calgary	Airdrie	Crossfield	Carstairs	Didsbury	Dids	Bowden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morningside	Ponoka	Maskwacis	Wetaskiwin	Millet	Leduc	Nisku	Edmonton	Total
Calgary	-	3,131	81	65	47	56	6	29	10	496	21	19	0	14	25	13	2	41	0	2,205	6260.65875
Airdrie	3,131	-	58	17	9	8	1	3	1	23	2	2	0	1	2	1	0	3	0	50	3310.956574
Crossfield	81	58	-	3	1	1	0	0	0	1	0	0	0	0	0	0	0	0	0	3	148.9585101
Carstairs	65	17	3	-	6	2	0	0	0	3	0	0	0	0	0	0	0	0	0	4	100.6376638
Didsbury	47	9	1	6	-	5	0	1	0	4	0	0	0	0	0	0	0	0	0	5	77.7344946
Olds	56	8	1	2	5	-	1	3	1	11	1	1	0	0	0	0	0	1	0	10	99.28639877
Bowden	6	1	0	0	0	1	-	2	0	3	0	0	0	0	0	0	0	0	0	2	15.88315564
Innisfail	29	3	0	0	1	3	2	-	6	42	2	1	0	0	1	0	0	1	0	11	101.5012791
Penhold	10	1	0	0	0	1	0	6	-	74	1	1	0	0	0	0	0	0	0	6	100.9381264
Red Deer	496	23	1	3	4	11	3	42	74	-	134	49	0	14	15	6	1	13	0	374	1262.858955
Blackfalds	21	2	0	0	0	1	0	2	1	134	-	33	0	3	3	1	0	2	0	24	226.9069348
Lacombe	19	2	0	0	0	1	0	1	1	49	33	-	0	6	4	1	0	2	0	28	146.5820456
Morningside	0	0	0	0	0	0	0	0	0	0	0	0	-	0	0	0	0	0	0	0	1.686958105
Ponoka	14	1	0	0	0	0	0	0	0	14	3	6	0	-	20	4	0	4	0	41	108.5680291
Maskwacis	25	2	0	0	0	0	0	1	0	15	3	4	0	20	-	35	1	14	0	127	249.5717572
Wetaskiwin	13	1	0	0	0	0	0	0	0	6	1	1	0	4	35	-	4	18	0	120	205.8066277
Millet	2	0	0	0	0	0	0	0	0	1	0	0	0	0	1	4	-	9	0	31	47.69441328
Leduc	41	3	0	0	0	1	0	1	0	13	2	2	0	4	14	18	9	-	1	2,215	2323.679533
Nisku	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	1	-	3	3.494425792
Edmonton	2,205	50	3	4	5	10	2	11	6	374	24	28	0	41	127	120	31	2,215	3	-	5255.63008
Total	6260.65875	3310.956574	148.9585101	100.6376638	77.7344946	99.28639877	15.88315564	101.501279	1 100.9381264	1262.858955	226.9069348	146.5820456	1.686958105	108.5680291	249.5717572	205.8066277	47.6944132	3 2323.679533	3.494425792	5255.63008	20049.03471
Ratio	0.386481608	0.204391243	0.009195474	0.006212542	0.004798689	0.006129126	0.000980495	0.00626585	5 0.00623109	0.077958531	0.014007369	0.009048771	0.000104139	0.006702098	0.015406509	0.012704809	0.00294426	0.143444874	0.000215717	0.3244394	1.237662599

Table 7- Regional Rail Infrastructure Cost Estimate

500m twinned track at stations and 3km at identifiedpassing points only, Ba	se RR			Section 1: Calgary, Airdrie, Crossfield, Carstairs, Didsbury, Olds.			Section 2: Olds, Bow Blackfalds, Lacombe	den, Innisfail, Penł , Morningside, Pon	hold, loka	, Red Deer,	Section 3: Ponoka, Mas Leduc, Nisku, Edmonto	тс				
Description	Unit Mearsure	e Unit	Cost ('000)	Quantity	Cos	st	Quantity	C	Cost		Quantity	Cos	st	Quantity	Cos	t
Infrastructure				100km			117km				107km			324km		
New track construction adjacent to main track, praire grassland	km	\$	2,004.00	6km	\$	12,024,000	6km	5	\$	12,024,000	6km	\$	12,024,000	18km	\$	36,072,000
New track construction adjacent to main track, forested	km	\$	2,378.00													
New track construction adjacent to main track, over wet area	km	\$	3,260.00													
New track construction adjacent to main track, urban area	km	\$	6,249.00	5.5km	\$	34,369,500	6.5km	Ś	\$ 4	40,618,500	6km	\$	37,494,000	18km	\$	112,482,000
New track construction adjacent to main track, cutting into earth slope	km	\$	5,977.00													
New track construction adjacent to main track, cutting into rock	km	\$	8,490.00													
New track construction adjacent to main track, rip-rap beside river	km	\$	3,418.00													
New track construction adjacent to main track, high embankment	km	\$	3,977.00												_	
New track construction on existing track bed	km	\$	1,902.00	11.5km	\$	21,873,000	12.5km	Ś	\$ 2	23,775,000	12km	\$	22,824,000	36km	\$	68,472,000
Relocate existing track	km	\$	377.00													
Signals and communication, adding new track to centralized traffic control	km	\$	513.00	11.5km	\$	5,899,500	12.5km	Ś	\$	6,412,500	12km	\$	6,156,000	36km	\$	18,468,000
Platform 12 foot width	sqm	\$	0.02	14*350sqm	\$	98,000	14*350sqm	Ś	\$	98,000	18*350sqm	\$	126,000	_	\$	322,000
Station canopy	sqm	\$	0.05	14*100sqm	\$	70,000	14*100sqm	Ś	\$	70,000	18*100sqm	\$	90,000	23 stations	\$	230,000
Signage, lighting, benches, bike racks, TVM	platform	\$	70.60	14No	\$	988,400	14No	Ś	\$	988,400	18No	\$	1,270,800		\$	3,247,600
#15 Switch	switch	\$	240.00													
#20 Switch	switch	\$	331.00	18No	\$	5,958,000	18No	2	\$	5,958,000	20No	\$	6,620,000	46No	\$	18,536,000
Grade crossing surface	crossing	\$	31.20	12No	\$	374,400	10No	2	\$	312,000	17No	\$	530,400	39No	\$	1,216,800
Grade crossing protection	crossing	\$	201.00	12No	\$	2,412,000	10No	2	\$	2,010,000	17No	\$	3,417,000	39No	\$	7,839,000
Corrugated metal pipe culvert	meter	\$	4.27													
Bridge support bents	bent	\$	49.00	4No	\$	196,000	7No	5	\$	343,000					\$	539,000
Single track concrete bridge span	meter	\$	28.55											9 rail bridges		
Single track steel bridge span	meter	\$	72.18	125m	\$	9,022,500	125m	5	\$	9,022,500					\$	18,045,000
Maintenance depot	Lump Sum	\$	2,690.00				2No	5	\$	5,380,000				2No	\$	5,380,000
				Total	\$	93,285,300	Total	5	\$ 1	07,011,900	Total	\$	90,552,200	Total	\$	290,849,400

Table 8 - Regional Rail & Express Infrastructure Cost Estimate

Twinned track through the entire corridor			Section 1: Calgary, Airdrie, Crossfield, Carstairs, Didsbury, Olds.			Section 2: Olds, Bowden, Innisfail, Deer, Blackfalds, Lacombe, Morning	Penho oside.	ld, Red Ponoka.	Section 3: Ponoka, Maskwa Millet, Leduc, Nisku, Edmor	тот	AL				
Description	Unit Mearsure	Unit Cost	('000)	Quantity	Cost		Quantity	Cost		Quantity	Cc	st	Quantity	Cos	t
Infrastructure				100km			117km			107km			324km		
New track construction adjacent to main track, praire grassland	km	\$ 2,0	04.00	72km	\$ 1	44,288,000	98km	\$ 1	96,392,000	81km	\$	162,324,000	251km	\$	503,004,000
New track construction adjacent to main track, forested	km	\$ 2,3	78.00				2km	\$	4,756,000	2km	\$	4,756,000	4km	\$	9,512,000
New track construction adjacent to main track, over wet area	km	\$ 3,2	60.00	1km	\$	3,260,000							1km	\$	3,260,000
New track construction adjacent to main track, urban area	km	\$ 6,2	49.00	25km	\$ 1	56,225,000	21km	\$ 1	31,229,000	31km	\$	193,719,000	77km	\$	481,173,000
New track construction adjacent to main track, cutting into earth slope	km	\$ 5,9	77.00											\$	-
New track construction adjacent to main track, cutting into rock	km	\$ 8,4	90.00											\$	-
New track construction adjacent to main track, rip-rap beside river	km	\$ 3,4	18.00	5km		17090000							5km		
New track construction adjacent to main track, high embankment	km	\$ 3,9	77.00	1km	\$	3,977,000	3km		11931000	1km	\$	3,977,000	5km		
New track construction on existing track bed	km	\$ 1,9	02.00	100km	\$ 1	90,200,000	117km	\$ 2	22,534,000	107km	\$	203,514,000	324km	\$	616,248,000
Relocate existing track	km	\$ 3	77.00												
Signals and communication, adding new track to centralized traffic control	km	\$5	13.00	100km	\$	51,300,000	117km	\$	60,021,000	107km	\$	54,891,000	324km	\$	166,212,000
Platform 12 foot width	sqm	\$	0.02	14*350sqm	\$	98,000	14*350sqm	\$	98,000	18*350sqm	\$	126,000		\$	322,000
Station canopy	sqm	\$	0.05	5 14*100sqm \$	\$	70,000	14*100sqm	\$	70,000	18*100sqm	\$	90,000	23 stations	\$	230,000
Signage, lighting, benches, bike racks, TVM	platform	\$	70.60	14No	\$ 988,400		14No	\$ 988,400) 18No		1,270,800		\$	3,247,600
#15 Switch	switch	\$ 2	40.00												
#20 Switch	switch	\$ 3	31.00	48No	\$	15,888,000	48No	\$	15,888,000	48No	\$	15,888,000	144No	\$	47,664,000
Grade crossing surface	crossing	\$	31.20	12No	\$	374,400	10No	\$	312,000	17No	\$	530,400	39No	\$	1,216,800
Grade crossing protection	crossing	\$ 2	01.00	12No	\$	2,412,000	10No	\$	2,010,000	17No	\$	3,417,000	39No	\$	7,839,000
Corrugated metal pipe culvert	meter	\$	4.27	50m											
Bridge support bents	bent	\$	49.00	40No	\$	1,960,000	47No	\$	2,303,000	49No	\$	1,862,000	20 read bridges 40	\$	6,125,000
Single track concrete bridge span	meter	\$	28.55	445m	\$	12,704,750	470m	\$	13,418,500	475m	\$	13,561,250	29 IUau bridges, 10	\$	39,684,500
Single track steel bridge span	meter	\$	72.18	125m	\$	9,022,500	125m	\$	9,022,500	75m	\$	5,413,500	rail bridges	\$	23,458,500
Maintenance depot	Lump Sum	\$ 2,6	90.00	1No	\$	2,690,000	2No	\$	5,380,000	1No	\$	2,690,000	4No	\$	10,760,000
				Total	\$6	12,548,050	Total	\$ 6	76,353,400	Total	\$	668,029,950	Total	\$	1,956,931,400

Table 9 - Regional Rail & Express Service Operating Cost Estimates

Operations		A weekday: 2 Trains (1 loc & finish in Red Deer	B weekday: 2 Trains (1 loco 5 cars) start & finish in Red Deer			C weekday: 2 Trains (1 loco 5 cars) start & finish in Red Deer			A weekend: 2 Trains (1 loco finish in Red Deer	o 5 ca	ars) start &	C weekend: 2 Trains (1 loo & finish in Red Deer	co 5 cars) star	Express: 2 Trains, 4 services, start & finish in Calgary & Edmonton			
Deisel fuel cost	\$1 per litre 1No Loco 567l per hr	16.5 hrs per day per loco	\$ 4,659,03	9 7.5 hrs per day per loco	\$ 2,	117,745	16.5 hrs per day per loco	\$	4,659,039	12.5 hrs per day per loco	\$	1,630,125	16.5 hrs per day per loco	\$ 2,151,76	5 8 hrs per day per loco	\$ 2,8	330,464
Oil & other	5% of deisel		\$ 232,95	1	\$	105,887		\$	232,951		\$	81,506		\$ 107,58	3	\$ 1	141,524
Locomotive maintenance	\$1.39 per loco-km	1296km per day per loco	\$ 897,11	7 648km per day per loco	\$	448,558	1296km per day per loco	\$	897,117	972km per day per loco	\$	310,748	1296km per day per loco	\$ 414,33	1296km per day per loco	\$ 1,1	124,099
Passenger car maintenance	\$1.06 per car-km	1296km per day per car	\$ 3,420,66	2 648km per day per car	\$ 1,	710,331	1296km per day per car	\$	3,420,662	972km per day per car	\$	1,184,868	1296km per day per car	\$ 1,579,82	1296km per day per car	\$ 4,2	286,131
2-person train crew cost	\$140 per hour	17.5 hours	\$ 1,220,10	0 8.5 hours	\$	592,620	17.5 hours	\$	1,220,100	13.5 hours	\$	434,700	17.5 hours	\$ 563,50) 13 hours	\$ 9	910,000
Track maintenance charge	\$43,885 per km per year	324km	\$ 14,218,74	0 324km	\$ 14,2	218,740	324km	\$ ·	14,218,740	324km	\$ 1	4,218,740	324km	\$ 14,218,74) 324km	\$ 14,2	218,740
Train dispatching & shared infrastructure use charge	\$19.38 per train-km	1296km per day per train	\$ 12,508,00	7 648km per day per train	\$ 6,2	254,004	1296km per day per train	\$ ·	12,508,007	972km per day per train	\$	4,332,593	1296km per day per train	\$ 5,776,79	1296km per day per train	\$ 15,6	372,684
Insurance, \$100 million liability coverage	\$200,000 annual premium		\$ 200,00	0	\$ 3	200,000		\$	200,000		\$	200,000		\$ 200,00)	\$ 2	200,000
Station operating cost	\$300,000 per year	23No	\$ 6,900,00	0 23No	\$ 6,9	900,000	23No	\$	6,900,000	23No	\$	6,900,000	23No	\$ 6,900,00) 23No	\$ 6,9) 00,000
General manager	\$150,000 per year	1No	\$ 150,00	0 1No	\$	150,000	1No	\$	150,000	1No	\$	150,000	1No	\$ 150,00) 1No	\$ 1	150,000
Operations supervisor	\$125,000 per year	1No	\$ 125,00	0 1No	\$	125,000	1No	\$	125,000	1No	\$	125,000	1No	\$ 125,00) 1No	\$ 1	125,000
		Total	\$ 44,531,61	6 Total	\$ 32,	822,885	Total	\$ 4	44,531,616	Total	\$ 2	9,568,280	Total	\$ 32,187,53	Total	\$ 46,5	558,642

Table 10 - Calgary to Edmonton Regional Rail Fare Table

	Calgary Tower	Country Hills Blyd (YYC)	Airdrie	Crossfeild	Carstairs	Didsbury	Olds	Bowden	Innisfail	Penhold	Red Deer	Blackfalds	Lacombe	Morning side	Ponoka	Maskwacis	Wetaskiwin	Millet	Leduc	Nisku (YEG)	South Edmonton	Strathcona	Edmonton Legislature
Calgary Tower		4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	72	72	76	76	76
Country Hils Blvd (YYC)	4		4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	68	68	72	72	72
Airdrie	8	4		4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	64	64	68	68	68
Crossfield	12	8	4		4	8	12	16	20	24	28	32	36	40	44	48	52	56	60	60	64	64	64
Carstairs	16	12	8	4		4	8	12	16	20	24	28	32	36	40	44	48	52	56	56	60	60	60
Didsbury	20	16	12	8	4		4	8	12	16	20	24	28	32	36	40	44	48	52	52	56	56	56
Olds	24	20	16	12	8	4		4	8	12	16	20	24	28	32	36	40	44	48	48	52	52	52
Bowden	28	24	20	16	12	8	4		4	8	12	16	20	24	28	32	36	40	44	44	48	48	48
Innisfail	32	28	24	20	16	12	8	4		4	8	12	16	20	24	28	32	36	40	40	44	44	44
Penhold	36	32	28	24	20	16	12	8	4		4	8	12	16	20	24	28	32	36	36	40	40	40
Red Deer	40	36	32	28	24	20	16	12	8	4		4	8	12	16	20	24	28	32	32	36	36	36
Blackfalds	44	40	36	32	28	24	20	16	12	8	4		4	8	12	16	20	24	28	28	32	32	32
Lacombe	48	44	40	36	32	28	24	20	16	12	8	4		4	8	12	16	20	24	24	28	28	28
Morningside	52	48	44	40	36	32	28	24	20	16	12	8	4		4	8	12	16	20	20	24	24	24
Ponoka	56	52	48	44	40	36	32	28	24	20	16	12	8	4		4	8	12	16	16	20	20	20
Maskwacis	60	56	52	48	44	40	36	32	28	24	20	16	12	8	4		4	8	12	12	16	16	16
Wetaskiwin	64	60	56	52	48	44	40	36	32	28	24	20	16	12	8	4		4	8	8	12	12	12
Millet	68	64	60	56	52	48	44	40	36	32	28	24	20	16	12	8	4		4	4	8	8	8
Leduc	72	68	64	60	56	52	48	44	40	36	32	28	24	20	16	12	8	4		4	4	8	8
Nisku (YEG)	72	68	64	60	56	52	48	44	40	36	32	28	24	20	16	12	8	4	4		4	4	4
South Edmonton	76	72	68	64	60	56	52	48	44	40	36	32	28	24	20	16	16	8	4	4		4	4
Strathcona	76	72	68	64	60	56	52	48	44	40	36	32	28	24	20	16	16	8	8	4	4		4
Edmonton Legislature	76	72	68	64	60	56	52	48	44	40	36	32	28	24	20	16	16	8	8	4	4	4	
										Calgary	<u>- Edmonto</u>	n Corridor	<u>⊦are Table</u>	2									